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Abstract-Cloud computing can be seen as an innovation in 
different ways. From a technological perspective it is an 
advancement of computing, which’s history can be traced back 
to the construction of the calculating machine.  Cloud 
Computing has great potential of providing robust 
computational power to the society at reduced cost. It enables 
customers with limited computational resources to outsource 
their large computation workloads to the cloud, and 
economically enjoy the massive computational power, 
bandwidth, storage, and even appropriate software that can be 
shared in a pay-per-use manner. We must design mechanisms 
that not only protect sensitive information by enabling 
computations with encrypted data, but also protect customers 
from malicious behaviors by enabling the validation of the 
computation result. In order to achieve practical efficiency, our 
mechanism design explicitly decomposes the LP computation 
outsourcing into public LP solvers running on the cloud and 
private LP parameters owned by the customer. The resulting 
flexibility allows us to explore appropriate security/efficiency 
tradeoff via higher-level abstraction of LP computations than 
the general circuit representation. In particular, by formulating 
private data owned by the customer for LP problem as a set of 
matrices and vectors, we are able to develop a set of efficient 
privacy-preserving problem transformation techniques, which 
allow customers to transform original LP problem into some 
arbitrary one while protecting sensitive input/output 
information. To validate the computation result, we further 
explore the fundamental duality theorem of LP computation 
and derive the necessary and sufficient conditions that correct 
result must satisfy. Such result verification mechanism is 
extremely efficient and incurs close-to-zero additional cost on 
both cloud server and customers. 
 

I. INTRODUCTION 
The term cloud computing is sometimes used to refer to a 
new paradigm – some authors even speak of a new 
technology – that flexibly offers IT resources and services 
over the Internet. Cloud Computing provides convenient on-
demand network access to a shared pool of configurable 
computing resources that can be rapidly deployed with great 
efficiency and minimal management overhead. One 
fundamental advantage of the cloud paradigm is computation 
outsourcing, where the computational power of cloud 
customers is no longer limited by their resource-constraint 
devices. By outsourcing the workloads into the cloud, 
customers could enjoy the literally unlimited computing 
resources in a pay-per-use manner without committing any 
large capital outlays in the purchase of hardware and software 

and/or the operational overhead there in. Despite the 
tremendous benefits, outsourcing computation to the 
commercial public cloud is also depriving customers’ direct 
control over the systems that consume and produce their data 
during the computation, which inevitably brings in new 
security concerns and challenges towards this promising 
computing model. On the one hand, the outsourced 
computation workloads often contain sensitive information, 
such as the business financial records, proprietary research 
data, or personally identifiable health information etc. To 
combat against unauthorized information leakage, sensitive 
data have to be encrypted before outsourcing so as to provide 
end- to-end data confidentiality assurance in the cloud and 
beyond. However, ordinary data encryption techniques in 
essence prevent cloud from performing any meaningful 
operation of the underlying plaintext data, making the 
computation over encrypted data a very hard problem. On the 
other hand, the operational details inside the cloud are not 
transparent enough to customers . As a result, there do exist 
various motivations for cloud server to behave unfaithfully 
and to return incorrect results, i.e., they may behave beyond 
the classical semi-honest model. For example, for the 
computations that require a large amount of computing 
resources, there are huge financial  incentives for the cloud to 
be “lazy” if the customers cannot tell the correctness of the 
output. Besides, possible software bugs, hardware failures, or 
even outsider attacks might also affect the quality of the 
computed results. Thus, we argue that the cloud is 
intrinsically not secure from the viewpoint of customers. 
Without providing a mechanism for secure computation 
outsourcing, i.e., to protect the sensitive input and output 
information of the workloads and to validate the integrity of 
the computation result, it would be hard to expect cloud 
customers to turn over control of their workloads from local 
machines to cloud solely based on its economic savings and 
resource flexibility. For practical consideration, such a design 
should further ensure that customers perform less amount of 
operations following the mechanism than completing the 
computations by themselves directly. Otherwise, there is no 
point for customers to seek help from cloud. Scheme, a 
general result of secure computation outsourcing has been 
shown viable in theory, where the computation is represented 
by an encrypted combinational Boolean circuit that allows to 
be evaluated with encrypted  private inputs. Although some 
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elegant designs on secure outsourcing of scientific 
computations, sequence comparisons, and matrix 
multiplication etc. have been proposed in the literature, it is 
still hardly possible to apply them directly in a practically 
efficient manner, especially for large problems. In those 
approaches, either heavy cloud-side cryptographic 
computations, or multi-round interactive protocol executions, 
or huge communication complexities, are involved (detailed 
discussions in Section VI). In short, practically efficient 
mechanisms with immediate practices for secure computation 
outsourcing in cloud are still missing. we propose to 
explicitly decompose the LP computation outsourcing into 
public LP solvers running on the cloud and private LP 
parameters owned by the customer. The flexibility of such a 
decomposition allows us to explore higher-level abstraction 
of LP computations than the general circuit representation for 
the practical efficiency. Specifically, we first formulate 
private data owned by the customer for LP problem as a set 
of matrices and vectors. This higher level representation 
allows us to apply a set of efficient privacy-preserving 
problem transformation techniques, including matrix 
multiplication and affine mapping, to transform the original 
LP problem into some arbitrary one while protecting the 
sensitive input/output information. . One crucial benefit of 
this higher level problem transformation method is that 
existing algorithms and tools for LP solvers can be directly 
reused by the cloud server. Although the generic mechanism 
defined at circuit level, can even allow the customer to hide 
the fact that the outsourced computation is LP, we believe 
imposing this more stringent security measure than necessary 
would greatly affect the efficiency. To validate the 
computation result, we utilize the fact that the result is from 
cloud server solving the transformed LP problem. 
 

II. THE LAYERS  OF CLOUD COMPUTING 
Cloud computing is based on a set of many pre-existing and 
well researched concepts such as distributed and grid 
computing, virtualization or Software-as-a-Service. 
Although, many of the concepts don’t appear to be new, the 
real innovation of cloud computing lies in the way it provides 
computing services to the customer. Various business models 
have evolved in recent times to provide services on different 
levels of abstraction. These services include providing 
software applications, programming platforms, data-storage 
or computing infrastructure. Classifying cloud computing 
services along different layers is common practice in the 
industry23. Wang et al. for example describe three 
complementary services, Hardware-as-a- Service (HaaS), 
Software-as-a-Service (SaaS) and Data-as-a-Service (DaaS). 
These services together form Platform-as-a-Service (PaaS), 
which is offered as cloud computing24. In an attempt to 
obtain a comprehensive understanding of cloud computing 
and its relevant components, Youseff, Butrico and Da Silva 
were among the first who suggested a unified ontology of 
cloud computing25. According to their layered model, cloud 
computing systems fall into one of the following five layers: 
applications, software environments, software infrastructure, 

software kernel, and hardware. Each layer represents a level 
of abstraction, hiding the user from all underlying 
components and thus providing simplified access to the 
resources or functionality. In the following section we are 
going to describe each layer of Youseff’s Butrico’s and Da 
Silva’s model. 
 
                                                     Cloud Applications 

 

   Cloud Software Environments 

  Cloud Software infrastructure 

 

Software Kernal 
 

Figure1. Cloud Computing Structure 
 
Cloud Application Layer 
When it comes to user interaction, the cloud application layer 
is the most visible layer to the end-customer. It is usually 
accessed through web-portals and thus builds the front-end, 
the user interacts with when using cloud services. A Service 
in the application layer may consist of a mesh of various 
other cloud services, but appears as a single service to the 
end-customer. This model of software provision, normally 
also referred to as Software-as-a-Service, appears to be 
attractive for many users. Reasons for this are the reduction 
of software and system maintenance costs, the shift of 
computational work from local systems into the cloud, or a 
reduction of upfront investments into hardware and software 
licenses. Also the service provider has advantages over 
traditional software licensing models. The effort for software 
upgrades is reduced, since patches and features can be 
deployed centrally in shorter cycles. Depending on the 
pricing model a continuous revenue stream can be obtained. 
However, security and availability are issues that still need to 
be addressed. Also the migration of user data is a task that 
should not be underestimated. Examples for applications in 
this layer are numerous, but the most prominent might be 
Sales force’s Customer Relationships Management (CRM), 
which include word-processing, spreadsheet and calendaring. 
Cloud Software Environment Layer 
The cloud software environment layer (also called software 
platform layer) provides a programming language 
environment for developers of cloud applications. The 
software environment also offers a set of well-defined 
application programming interfaces (API) to utilize cloud 
services and interact with other cloud applications. Thus 
developers benefit from features like automatic scaling and 
load balancing, authentication services, communication 
services or graphical user interface (GUI) components. 
However, as long as there is no common standard for cloud 
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application development, lock-in effects arise, making the 
developer dependent on the proprietary software environment 
of the cloud platform provider. This service, provided in the 
software environment layer is also referred to as Platform-as-
a-Service. A known example of a cloud software platform is 
Google’s App Engine29, which provides developers a phyton 
runtime environment and specified APIs to develop 
applications for Google’s cloud environment. Another 
example is Sales force’s Apex change platform30 that allows 
developers to extend the Sales force CRM solution or even 
develop entire new applications that runs on their cloud 
environment. As we will highlight in Chapter 4.1 one can 
also look at the cloud platform from a value network or 
business model perspective. In that sense, the cloud platform 
can act as a market place for applications. 
Cloud Software Infrastructure Layer 
The cloud software infrastructure layer provides resources to 
other higher-level layers, which are utilized by cloud 
applications and cloud software platforms. The services 
offered in this layer are commonly differentiated into 
computational resources, data storage, and communication. 
Computational resources in this context are usually referred 
to as Infrastructure-as-a-Service (IaaS). Virtual Machines are 
the common form of providing computational resources to 
users, which they can fully administrate and configure to fit 
their specific needs. Virtualization technologies can be seen 
as the enabling technology for IaaS, allowing data center 
providers to adjust resources on demand, thus utilizing their 
hardware more efficiently. The downside of the medal is the 
lack of a strict performance allocation on shared hardware 
resources. Due to this, infrastructure providers cannot give 
strong performance guarantees which result in unsatisfactory 
service level agreements (SLA). These weak SLAs propagate 
upwards in the cloud stack, possibly leading to availability 
problems of cloud applications. The most prominent 
examples of IaaS are Amazon’s Elastic Compute Cloud31 
and Enomalism’s Elastic Computing Infrastructure32. There 
are also some academic open source projects like 
Eucalyptus33 and Nimbus34. In analogy to computational 
resources data storage within the cloud computing model is 
offered as Storage-as-a-Service. This allows users to obtain 
demand-flexible storage on remote disks which they can 
access from everywhere. Like for other storage systems, 
tradeoffs must be made between the partly conflicting 
requirements: high availability, reliability, performance, 
replication and data consistency, which in turn are manifested 
in the service  providers SLAs. Examples of Storage-as-a-
Service are Amazon’s Elastic Block Storage (EBS)35 or its 
Simple Storage Service (S3)36 and Rackspace’s Cloud 
Files37. In addition, to simple storage space, data can be 
offered as service as well. Amazon for example offers the 
human genome or the US census as public data sets to use for 
other services or analytics38. A fairly new idea is 
Communication-as-a-Service (CaaS), which shall provide 
quality of service ensured communication capabilities such as 
network security, dedicated bandwidth or network 
monitoring. Audio and video conferencing is just one 

example of cloud applications that would benefit from CaaS. 
So far this service is only a research interest rather than in 
commercial use. However, Microsoft’s Connected Service 
Framework (CSF)39 can be counted into this class of 
services. As Figure 1 shows, cloud applications must not 
necessarily be developed upon a cloud software platform, but 
can also run directly on the cloud software infrastructure 
layer or even the software kernel, thus bypassing the 
aforementioned layers. Although this approach might offer 
some performance advantages, it is directly dependent on 
lower level components and does not make use of 
development aids such as the automatic scaling provided by 
the cloud software platform. 
Software Kernel Layer 
The software kernel layer represents the software 
management environment for the physical servers in the 
datacenters. These software kernels are usually implemented 
as operation system kernel, hypervisor, virtual machine 
monitor or clustering middleware. Typically, this layer is also 
the level where grid computing applications are deployed. 
Globus40 is an example of a successful grid middleware. At 
this layer, cloud computing can benefit from the research 
already undertaken in the grid computing research 
community. 
Hardware / Firmware Layer 
At the bottom end of the layered model of cloud computing is 
the actual physical hardware, which forms the backbone of 
any cloud computing service offering. Hardware can also be 
subleased from datacenter providers to, normally, large 
enterprises. This is typically offered in traditional outsourcing 
plans, but in a as-a-service context also referred to as 
Hardware-asa- Service (HaaS). 
 

III. IT AUDITING USING CONTROLS TO PROTECT 
INFORMATION 

Software as a Service (SaaS) In this model, you will access 
the cloud provider’s applications, which are running on a 
cloud infrastructure. The applications are accessible from 
client devices through a thin client interface such as a web 
browser (for example, web-based e-mail). As the consumer, 
you don’t manage or control the data center, network, servers, 
operating systems, middleware, database management system 
(DBMS), or even individual application capabilities (with the 
possible exception of limited user-specific application 
configuration settings), but you do have control over your 
data. 
Platform as a Service (PaaS) In this model, you will deploy 
applications you created or acquired onto the provider’s cloud 
infrastructure, using programming languages and tools 
supported by the cloud provider. As the consumer, you don’t 
manage or control the data center, network, servers, operating 
systems, middleware, or DBMS, but you do have control over 
your data and the deployed applications and possibly 
application hosting environment configurations. 
Infrastructure as a Service (IaaS) In this model, processing, 
storage, networks, and other fundamental computing 
resources are rented from the cloud provider. This allows you 
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to deploy and run arbitrary software, which can include 
operating systems and applications. As the consumer, you 
don’t manage or control the data center or network, but you 
do have control over your data and the operating systems, 
middleware, DBMS, and deployed applications. 
 

IV. PROBLEM STATEMENT 
the data be encrypted to protect against possible compromise. 
This reduces the risk of a breach impacting the confidentiality 
or integrity of your data. If you have unencrypted data in a 
shared environment (such as cloud computing), you can 
assume that it is no longer confidential. This section presents 
our LP outsourcing scheme which provides a complete 
outsourcing solution for – not only the privacy protection of 
problem input/output, but also its efficient result checking. 
We start from an overview of secure LP outsourcing design 
framework and discuss a few basic techniques and their 
demerits, which leads to a stronger problem transformation 
design utilizing affine mapping. We then discuss effective 
result verification by leveraging the duality property of LP. 
Finally, we give the full scheme description. 
Linear Programming 
An optimization problem is usually formulated as a 
mathematical programming problem that seeks the values for 
a set of decision variables to minimize (or maximize) an 
objective function representing the cost subject to a set of 
constraints. For linear programming, the objective function is 
an affine function of the decision variables, and the 
constraints are a system of linear equations and inequalities. 
Since a constraint in the form of a linear inequality can be 
expressed as a linear equation by introducing a non-negative 
slack variable, and a free decision variable can be expressed 
as the difference of two non-negative auxiliary variables, any 
linear programming problem can be expressed in the 
following standard form, minimize cT x subject to Ax = b, x 
≥ 0.  Here x is an n × 1 vector of decision variables, A is an m 
×n matrix, and both c and b are n × 1 vectors. It can be 
assumed further that m ≤ n and that A has full row rank;  
otherwise, extras rows can always be eliminated from A. In 
this paper, we study a more general form as follows, 
Minimize cT x subject to Ax = b, Bx ≥ 0.  In Eq. (2), we 
replace the non-negative requirements in Eq. by requiring 
that each component of Bx to be nonnegative, where B is an 
n × n non-singular matrix, i.e. Eq. (2) de- generates to Eq. (1) 
when B is the identity matrix. Thus, the LP problem can be 
defined via the tuple Φ = (A, B, b, c) as input, and the 
solution x as output. 
 

V. RES ULT ENHANCEMENT 
The computation overhead consists of key generation, 
problem encryption operation, and result verification, which 
corresponds to the three algorithms KeyGen, ProbEnc, and 
ResultDec, respectively. Because KeyGen and Result- Dec 
only require a set of random matrix generation as well as 
vector-vector and matrix-vector multiplication, the 
computation complexity of these two algorithms are upper 
bounded via O(n2 ). We now assess the practical efficiency 

of the proposed secure and verifiable LP outsourcing scheme 
with experiments. We implement the proposed mechanism 
including both the customer and the cloud side processes in 
Matlab and utilize the MOSEK optimization [20] through its 
Matlab interface to solve the original LP problem Φ and 
encrypted LP problem ΦK . Both customer and cloud server 
computations in our experiment are conducted on the same 
workstation with an Intel Core 2 Duo processor running at 
1.86 GHz with 4 GB RAM. In this way, the practical 
efficiency of the proposed mechanism can be assessed 
without a real cloud environment. We also ignore the 
communication latency between the customers and the cloud 
for this application since the computation dominates the 
running time as evidenced by our experiments. Our randomly 
generated test benchmark covers the small and medium sized 
problems, where m and n are increased from 50 to 3200 and 
60 to 3840, respectively. All these benchmarks are for the 
normal cases with feasible optimal solutions. Since in 
practice the infeasible/unbounded cases for LP computations 
are very rare, we do not conduct those experiments for the 
current preliminary work and leave it as one of our future 
tasks. Table I gives our experimental results, where each 
entry in the table represents the mean of 20 trials. In this 
table, the sizes of the original LP problems are reported in the 
first two columns. The times to solve the original LP problem 
in seconds, original , are reported in the third column. The 
times to solve the encrypted LP problem in seconds are 
reported in the fourth and fifth columns, separated into the 
time for the cloud server cloud and the time for the customer . 
Note that since each KeyGen would generate a different key, 
the encrypted LP problem ΦK generated by ProbEnc would 
be different and thus result in a different running time to 
solve it. The cloud and customer reported in Table I are thus 
the average of multiple trials. We propose to assess the 
practical efficiency by two characteristics calculated from 
original , cloud, and customer. The Asymmetric Speedup, 
calculated as original, customer represents the savings of the 
computing resources for the customers to outsource the LP 
problems to the cloud using the proposed mechanism. The 
Cloud Efficiency, calculated as cloud, represents the overhead 
introduced to the overall computation by the proposed 
mechanism. 
 

VI. CONCLUS ION 
In this paper  the historic development of providing IT 
resources, cloud computing has been established as the most 
recent and most flexible delivery model of supplying 
information technology. It can be seen as the consequent 
evolution of the traditional on-premise computing spanning 
outsourcing stages from total to the selective, and from the 
multi-vendor outsourcing to an asset-free delivery. While 
from a technical perspective, cloud computing seems to pose 
manageable challenges, it rather incorporates a number of 
challenges on a business level, both from an operational as 
well as from a strategic point of view. As laid out above, 
cloud computing in its current stage also holds a number of 
contributions for both theory and practice that this article 
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could reveal and that will be addressed. we formalize the 
problem of securely outsourcing LP computations in cloud 
computing, and provide such a practical mechanism design 
which fulfills input/output privacy, cheating resilience, and 
efficiency. By explicitly decomposing LP computation 
outsourcing into public LP solvers and private data, our 
mechanism design is able to explore appropriate 
security/efficiency tradeoffs via higher level LP computation 
than the general circuit representation. We develop problem 
transformation techniques that enable customers to secretly 
transform the original LP into some arbitrary one while 
protecting sensitive input/output information. We also 
investigate duality theorem and derive a set of necessary and 
sufficient condition for result verification. Such a cheating 
resilience design can be bundled in the overall mechanism 
with close-to-zero additional overhead. Both security analysis 
and experiment results demonstrates the immediate 
practicality of the proposed mechanism. 
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