
Secured Auditing of Outsourced Data using Linear
Programming in Cloud

1 Satheesh Kavuri,2 Dr. Gangadhara Rao Kancharla, 1Sowmya Koneru,1

Sandeep Kotte

1

Dhanekula Institute of Engineering & Technology, Vijayawada
Department of Computer Science & Engineering

2

Acharya Nagarjuna University, Guntur
Department of Computer Science & Engineering

Abstract-Cloud computing can be seen as an innovation in
different ways. From a technological perspective it is an
advancement of computing, which’s history can be traced back
to the construction of the calculating machine. Cloud
Computing has great potential of providing robust
computational power to the society at reduced cost. It enables
customers with limited computational resources to outsource
their large computation workloads to the cloud, and
economically enjoy the massive computational power,
bandwidth, storage, and even appropriate software that can be
shared in a pay-per-use manner. We must design mechanisms
that not only protect sensitive information by enabling
computations with encrypted data, but also protect customers
from malicious behaviors by enabling the validation of the
computation result. In order to achieve practical efficiency, our
mechanism design explicitly decomposes the LP computation
outsourcing into public LP solvers running on the cloud and
private LP parameters owned by the customer. The resulting
flexibility allows us to explore appropriate security/efficiency
tradeoff via higher-level abstraction of LP computations than
the general circuit representation. In particular, by formulating
private data owned by the customer for LP problem as a set of
matrices and vectors, we are able to develop a set of efficient
privacy-preserving problem transformation techniques, which
allow customers to transform original LP problem into some
arbitrary one while protecting sensitive input/output
information. To validate the computation result, we further
explore the fundamental duality theorem of LP computation
and derive the necessary and sufficient conditions that correct
result must satisfy. Such result verification mechanism is
extremely efficient and incurs close-to-zero additional cost on
both cloud server and customers.

I. INTRODUCTION
The term cloud computing is sometimes used to refer to a
new paradigm – some authors even speak of a new
technology – that flexibly offers IT resources and services
over the Internet. Cloud Computing provides convenient on-
demand network access to a shared pool of configurable
computing resources that can be rapidly deployed with great
efficiency and minimal management overhead. One
fundamental advantage of the cloud paradigm is computation
outsourcing, where the computational power of cloud
customers is no longer limited by their resource-constraint
devices. By outsourcing the workloads into the cloud,
customers could enjoy the literally unlimited computing
resources in a pay-per-use manner without committing any
large capital outlays in the purchase of hardware and software

and/or the operational overhead there in. Despite the
tremendous benefits, outsourcing computation to the
commercial public cloud is also depriving customers’ direct
control over the systems that consume and produce their data
during the computation, which inevitably brings in new
security concerns and challenges towards this promising
computing model. On the one hand, the outsourced
computation workloads often contain sensitive information,
such as the business financial records, proprietary research
data, or personally identifiable health information etc. To
combat against unauthorized information leakage, sensitive
data have to be encrypted before outsourcing so as to provide
end- to-end data confidentiality assurance in the cloud and
beyond. However, ordinary data encryption techniques in
essence prevent cloud from performing any meaningful
operation of the underlying plaintext data, making the
computation over encrypted data a very hard problem. On the
other hand, the operational details inside the cloud are not
transparent enough to customers . As a result, there do exist
various motivations for cloud server to behave unfaithfully
and to return incorrect results, i.e., they may behave beyond
the classical semi-honest model. For example, for the
computations that require a large amount of computing
resources, there are huge financial incentives for the cloud to
be “lazy” if the customers cannot tell the correctness of the
output. Besides, possible software bugs, hardware failures, or
even outsider attacks might also affect the quality of the
computed results. Thus, we argue that the cloud is
intrinsically not secure from the viewpoint of customers.
Without providing a mechanism for secure computation
outsourcing, i.e., to protect the sensitive input and output
information of the workloads and to validate the integrity of
the computation result, it would be hard to expect cloud
customers to turn over control of their workloads from local
machines to cloud solely based on its economic savings and
resource flexibility. For practical consideration, such a design
should further ensure that customers perform less amount of
operations following the mechanism than completing the
computations by themselves directly. Otherwise, there is no
point for customers to seek help from cloud. Scheme, a
general result of secure computation outsourcing has been
shown viable in theory, where the computation is represented
by an encrypted combinational Boolean circuit that allows to
be evaluated with encrypted private inputs. Although some

Satheesh Kavuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4785 - 4789

4785

elegant designs on secure outsourcing of scientific
computations, sequence comparisons, and matrix
multiplication etc. have been proposed in the literature, it is
still hardly possible to apply them directly in a practically
efficient manner, especially for large problems. In those
approaches, either heavy cloud-side cryptographic
computations, or multi-round interactive protocol executions,
or huge communication complexities, are involved (detailed
discussions in Section VI). In short, practically efficient
mechanisms with immediate practices for secure computation
outsourcing in cloud are still missing. we propose to
explicitly decompose the LP computation outsourcing into
public LP solvers running on the cloud and private LP
parameters owned by the customer. The flexibility of such a
decomposition allows us to explore higher-level abstraction
of LP computations than the general circuit representation for
the practical efficiency. Specifically, we first formulate
private data owned by the customer for LP problem as a set
of matrices and vectors. This higher level representation
allows us to apply a set of efficient privacy-preserving
problem transformation techniques, including matrix
multiplication and affine mapping, to transform the original
LP problem into some arbitrary one while protecting the
sensitive input/output information. . One crucial benefit of
this higher level problem transformation method is that
existing algorithms and tools for LP solvers can be directly
reused by the cloud server. Although the generic mechanism
defined at circuit level, can even allow the customer to hide
the fact that the outsourced computation is LP, we believe
imposing this more stringent security measure than necessary
would greatly affect the efficiency. To validate the
computation result, we utilize the fact that the result is from
cloud server solving the transformed LP problem.

II. THE LAYERS OF CLOUD COMPUTING
Cloud computing is based on a set of many pre-existing and
well researched concepts such as distributed and grid
computing, virtualization or Software-as-a-Service.
Although, many of the concepts don’t appear to be new, the
real innovation of cloud computing lies in the way it provides
computing services to the customer. Various business models
have evolved in recent times to provide services on different
levels of abstraction. These services include providing
software applications, programming platforms, data-storage
or computing infrastructure. Classifying cloud computing
services along different layers is common practice in the
industry23. Wang et al. for example describe three
complementary services, Hardware-as-a- Service (HaaS),
Software-as-a-Service (SaaS) and Data-as-a-Service (DaaS).
These services together form Platform-as-a-Service (PaaS),
which is offered as cloud computing24. In an attempt to
obtain a comprehensive understanding of cloud computing
and its relevant components, Youseff, Butrico and Da Silva
were among the first who suggested a unified ontology of
cloud computing25. According to their layered model, cloud
computing systems fall into one of the following five layers:
applications, software environments, software infrastructure,

software kernel, and hardware. Each layer represents a level
of abstraction, hiding the user from all underlying
components and thus providing simplified access to the
resources or functionality. In the following section we are
going to describe each layer of Youseff’s Butrico’s and Da
Silva’s model.

 Cloud Applications

 Cloud Software Environments

 Cloud Software infrastructure

Software Kernal

Figure1. Cloud Computing Structure

Cloud Application Layer
When it comes to user interaction, the cloud application layer
is the most visible layer to the end-customer. It is usually
accessed through web-portals and thus builds the front-end,
the user interacts with when using cloud services. A Service
in the application layer may consist of a mesh of various
other cloud services, but appears as a single service to the
end-customer. This model of software provision, normally
also referred to as Software-as-a-Service, appears to be
attractive for many users. Reasons for this are the reduction
of software and system maintenance costs, the shift of
computational work from local systems into the cloud, or a
reduction of upfront investments into hardware and software
licenses. Also the service provider has advantages over
traditional software licensing models. The effort for software
upgrades is reduced, since patches and features can be
deployed centrally in shorter cycles. Depending on the
pricing model a continuous revenue stream can be obtained.
However, security and availability are issues that still need to
be addressed. Also the migration of user data is a task that
should not be underestimated. Examples for applications in
this layer are numerous, but the most prominent might be
Sales force’s Customer Relationships Management (CRM),
which include word-processing, spreadsheet and calendaring.
Cloud Software Environment Layer
The cloud software environment layer (also called software
platform layer) provides a programming language
environment for developers of cloud applications. The
software environment also offers a set of well-defined
application programming interfaces (API) to utilize cloud
services and interact with other cloud applications. Thus
developers benefit from features like automatic scaling and
load balancing, authentication services, communication
services or graphical user interface (GUI) components.
However, as long as there is no common standard for cloud

Satheesh Kavuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4785 - 4789

4786

application development, lock-in effects arise, making the
developer dependent on the proprietary software environment
of the cloud platform provider. This service, provided in the
software environment layer is also referred to as Platform-as-
a-Service. A known example of a cloud software platform is
Google’s App Engine29, which provides developers a phyton
runtime environment and specified APIs to develop
applications for Google’s cloud environment. Another
example is Sales force’s Apex change platform30 that allows
developers to extend the Sales force CRM solution or even
develop entire new applications that runs on their cloud
environment. As we will highlight in Chapter 4.1 one can
also look at the cloud platform from a value network or
business model perspective. In that sense, the cloud platform
can act as a market place for applications.
Cloud Software Infrastructure Layer
The cloud software infrastructure layer provides resources to
other higher-level layers, which are utilized by cloud
applications and cloud software platforms. The services
offered in this layer are commonly differentiated into
computational resources, data storage, and communication.
Computational resources in this context are usually referred
to as Infrastructure-as-a-Service (IaaS). Virtual Machines are
the common form of providing computational resources to
users, which they can fully administrate and configure to fit
their specific needs. Virtualization technologies can be seen
as the enabling technology for IaaS, allowing data center
providers to adjust resources on demand, thus utilizing their
hardware more efficiently. The downside of the medal is the
lack of a strict performance allocation on shared hardware
resources. Due to this, infrastructure providers cannot give
strong performance guarantees which result in unsatisfactory
service level agreements (SLA). These weak SLAs propagate
upwards in the cloud stack, possibly leading to availability
problems of cloud applications. The most prominent
examples of IaaS are Amazon’s Elastic Compute Cloud31
and Enomalism’s Elastic Computing Infrastructure32. There
are also some academic open source projects like
Eucalyptus33 and Nimbus34. In analogy to computational
resources data storage within the cloud computing model is
offered as Storage-as-a-Service. This allows users to obtain
demand-flexible storage on remote disks which they can
access from everywhere. Like for other storage systems,
tradeoffs must be made between the partly conflicting
requirements: high availability, reliability, performance,
replication and data consistency, which in turn are manifested
in the service providers SLAs. Examples of Storage-as-a-
Service are Amazon’s Elastic Block Storage (EBS)35 or its
Simple Storage Service (S3)36 and Rackspace’s Cloud
Files37. In addition, to simple storage space, data can be
offered as service as well. Amazon for example offers the
human genome or the US census as public data sets to use for
other services or analytics38. A fairly new idea is
Communication-as-a-Service (CaaS), which shall provide
quality of service ensured communication capabilities such as
network security, dedicated bandwidth or network
monitoring. Audio and video conferencing is just one

example of cloud applications that would benefit from CaaS.
So far this service is only a research interest rather than in
commercial use. However, Microsoft’s Connected Service
Framework (CSF)39 can be counted into this class of
services. As Figure 1 shows, cloud applications must not
necessarily be developed upon a cloud software platform, but
can also run directly on the cloud software infrastructure
layer or even the software kernel, thus bypassing the
aforementioned layers. Although this approach might offer
some performance advantages, it is directly dependent on
lower level components and does not make use of
development aids such as the automatic scaling provided by
the cloud software platform.
Software Kernel Layer
The software kernel layer represents the software
management environment for the physical servers in the
datacenters. These software kernels are usually implemented
as operation system kernel, hypervisor, virtual machine
monitor or clustering middleware. Typically, this layer is also
the level where grid computing applications are deployed.
Globus40 is an example of a successful grid middleware. At
this layer, cloud computing can benefit from the research
already undertaken in the grid computing research
community.
Hardware / Firmware Layer
At the bottom end of the layered model of cloud computing is
the actual physical hardware, which forms the backbone of
any cloud computing service offering. Hardware can also be
subleased from datacenter providers to, normally, large
enterprises. This is typically offered in traditional outsourcing
plans, but in a as-a-service context also referred to as
Hardware-asa- Service (HaaS).

III. IT AUDITING USING CONTROLS TO PROTECT
INFORMATION

Software as a Service (SaaS) In this model, you will access
the cloud provider’s applications, which are running on a
cloud infrastructure. The applications are accessible from
client devices through a thin client interface such as a web
browser (for example, web-based e-mail). As the consumer,
you don’t manage or control the data center, network, servers,
operating systems, middleware, database management system
(DBMS), or even individual application capabilities (with the
possible exception of limited user-specific application
configuration settings), but you do have control over your
data.
Platform as a Service (PaaS) In this model, you will deploy
applications you created or acquired onto the provider’s cloud
infrastructure, using programming languages and tools
supported by the cloud provider. As the consumer, you don’t
manage or control the data center, network, servers, operating
systems, middleware, or DBMS, but you do have control over
your data and the deployed applications and possibly
application hosting environment configurations.
Infrastructure as a Service (IaaS) In this model, processing,
storage, networks, and other fundamental computing
resources are rented from the cloud provider. This allows you

Satheesh Kavuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4785 - 4789

4787

to deploy and run arbitrary software, which can include
operating systems and applications. As the consumer, you
don’t manage or control the data center or network, but you
do have control over your data and the operating systems,
middleware, DBMS, and deployed applications.

IV. PROBLEM STATEMENT
the data be encrypted to protect against possible compromise.
This reduces the risk of a breach impacting the confidentiality
or integrity of your data. If you have unencrypted data in a
shared environment (such as cloud computing), you can
assume that it is no longer confidential. This section presents
our LP outsourcing scheme which provides a complete
outsourcing solution for – not only the privacy protection of
problem input/output, but also its efficient result checking.
We start from an overview of secure LP outsourcing design
framework and discuss a few basic techniques and their
demerits, which leads to a stronger problem transformation
design utilizing affine mapping. We then discuss effective
result verification by leveraging the duality property of LP.
Finally, we give the full scheme description.
Linear Programming
An optimization problem is usually formulated as a
mathematical programming problem that seeks the values for
a set of decision variables to minimize (or maximize) an
objective function representing the cost subject to a set of
constraints. For linear programming, the objective function is
an affine function of the decision variables, and the
constraints are a system of linear equations and inequalities.
Since a constraint in the form of a linear inequality can be
expressed as a linear equation by introducing a non-negative
slack variable, and a free decision variable can be expressed
as the difference of two non-negative auxiliary variables, any
linear programming problem can be expressed in the
following standard form, minimize cT x subject to Ax = b, x
≥ 0. Here x is an n × 1 vector of decision variables, A is an m
×n matrix, and both c and b are n × 1 vectors. It can be
assumed further that m ≤ n and that A has full row rank;
otherwise, extras rows can always be eliminated from A. In
this paper, we study a more general form as follows,
Minimize cT x subject to Ax = b, Bx ≥ 0. In Eq. (2), we
replace the non-negative requirements in Eq. by requiring
that each component of Bx to be nonnegative, where B is an
n × n non-singular matrix, i.e. Eq. (2) de- generates to Eq. (1)
when B is the identity matrix. Thus, the LP problem can be
defined via the tuple Φ = (A, B, b, c) as input, and the
solution x as output.

V. RES ULT ENHANCEMENT
The computation overhead consists of key generation,
problem encryption operation, and result verification, which
corresponds to the three algorithms KeyGen, ProbEnc, and
ResultDec, respectively. Because KeyGen and Result- Dec
only require a set of random matrix generation as well as
vector-vector and matrix-vector multiplication, the
computation complexity of these two algorithms are upper
bounded via O(n2). We now assess the practical efficiency

of the proposed secure and verifiable LP outsourcing scheme
with experiments. We implement the proposed mechanism
including both the customer and the cloud side processes in
Matlab and utilize the MOSEK optimization [20] through its
Matlab interface to solve the original LP problem Φ and
encrypted LP problem ΦK . Both customer and cloud server
computations in our experiment are conducted on the same
workstation with an Intel Core 2 Duo processor running at
1.86 GHz with 4 GB RAM. In this way, the practical
efficiency of the proposed mechanism can be assessed
without a real cloud environment. We also ignore the
communication latency between the customers and the cloud
for this application since the computation dominates the
running time as evidenced by our experiments. Our randomly
generated test benchmark covers the small and medium sized
problems, where m and n are increased from 50 to 3200 and
60 to 3840, respectively. All these benchmarks are for the
normal cases with feasible optimal solutions. Since in
practice the infeasible/unbounded cases for LP computations
are very rare, we do not conduct those experiments for the
current preliminary work and leave it as one of our future
tasks. Table I gives our experimental results, where each
entry in the table represents the mean of 20 trials. In this
table, the sizes of the original LP problems are reported in the
first two columns. The times to solve the original LP problem
in seconds, original , are reported in the third column. The
times to solve the encrypted LP problem in seconds are
reported in the fourth and fifth columns, separated into the
time for the cloud server cloud and the time for the customer .
Note that since each KeyGen would generate a different key,
the encrypted LP problem ΦK generated by ProbEnc would
be different and thus result in a different running time to
solve it. The cloud and customer reported in Table I are thus
the average of multiple trials. We propose to assess the
practical efficiency by two characteristics calculated from
original , cloud, and customer. The Asymmetric Speedup,
calculated as original, customer represents the savings of the
computing resources for the customers to outsource the LP
problems to the cloud using the proposed mechanism. The
Cloud Efficiency, calculated as cloud, represents the overhead
introduced to the overall computation by the proposed
mechanism.

VI. CONCLUS ION
In this paper the historic development of providing IT
resources, cloud computing has been established as the most
recent and most flexible delivery model of supplying
information technology. It can be seen as the consequent
evolution of the traditional on-premise computing spanning
outsourcing stages from total to the selective, and from the
multi-vendor outsourcing to an asset-free delivery. While
from a technical perspective, cloud computing seems to pose
manageable challenges, it rather incorporates a number of
challenges on a business level, both from an operational as
well as from a strategic point of view. As laid out above,
cloud computing in its current stage also holds a number of
contributions for both theory and practice that this article

Satheesh Kavuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4785 - 4789

4788

could reveal and that will be addressed. we formalize the
problem of securely outsourcing LP computations in cloud
computing, and provide such a practical mechanism design
which fulfills input/output privacy, cheating resilience, and
efficiency. By explicitly decomposing LP computation
outsourcing into public LP solvers and private data, our
mechanism design is able to explore appropriate
security/efficiency tradeoffs via higher level LP computation
than the general circuit representation. We develop problem
transformation techniques that enable customers to secretly
transform the original LP into some arbitrary one while
protecting sensitive input/output information. We also
investigate duality theorem and derive a set of necessary and
sufficient condition for result verification. Such a cheating
resilience design can be bundled in the overall mechanism
with close-to-zero additional overhead. Both security analysis
and experiment results demonstrates the immediate
practicality of the proposed mechanism.

REFERENCES
[1] A. C.-C. Yao, “Protocols for secure computations (extended abstract),” in

Proc. of FOCS’82, 1982, pp. 160–164.
[2] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc

of STOC , 2009, pp. 169–178.
[3] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd ed.

Springer, 2008.
[4] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword

search over encrypted cloud data,” in Proc. o f ICDCS’10, 2010.
[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and

fine-grained access control in cloud computing,” in Proc. of IEEE
INFOCOM’10, San Diego, CA, USA, March 2010.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed. MIT press, 2008.

[8] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., vol.
13, pp. 354–356, 1969.

[9] D. Coppersmith and S. Winograd, “Matrix multip licat ion via arithmetic
progressions,” in Proc. o f STOC’87, 1987, pp. 1–6.

[10] MOSEK ApS, “The MOSEK Optimization Software,” Online at http:
//www.mosek.com/, 2010.

[11] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. of EUROCRYPT’99, 1999, pp. 223–238.

[12] S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for
signing contracts,” Commun. ACM, vol. 28, no. 6, pp. 637–647, 1985.

[13] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.
612–613, 1979.

[14] O. Goldreich, S. Micali, and A. Wigderson, “How to play any menta
game or a completeness theorem for protocols with honest majority,” in
Proc. of STOC’87, 1987, pp. 218–229.

[15] W. Du and M. J. Atallah, “Secure mult i-party computation problems
and their applications: a review and open problems,” in Proc. of New
Security Paradigms Workshop (NSPW), 2001, pp. 13–22.

[16] J. Li and M. J. Atallah, “Secure and private collaborative linear
programming,” in Proc. o f CollaborateCom, Nov. 2006.

[17] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating
computation: interactive proofs for muggles,” in Proc. o f STOC , 2008,
pp. 113–122.

[18] Sun Microsystems, Inc., “Building customer trust in cloud computing
with transparent security,” 2009, online at
https://www.sun.com/offers/details/sun transparency.xml.

[19] M. J. Atallah, K. N. Pantazopoulos, J. R. Rice, and E. H. Spafford,
“Secure outsourcing of scientific computations,” Advances in
Computers, vol. 54, pp. 216–272, 2001.

[20] S. Hohenberger and A. Lysyanskaya, “How to securely outsource
cryptographic computations,” in Proc. of TCC, 2005, pp. 264–282.

[21] M. J. Atallah and J. Li, “Secure outsourcing of sequence comparisons,”
Int. J. Inf. Sec., vol. 4, no. 4, pp. 277–287, 2005.

[22] D. Benjamin and M. J. Atallah, “Private and cheating-free outsourcing
of algebraic computations,” in Proc. of 6th Conf. on Privacy,
Security,and Trust (PST), 2008, pp. 240–245.

Satheesh Kavuri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4785 - 4789

4789

